Division of Malignant Hematology and Blood and Marrow Transplantation

Aaron Logan, MD, PhD aclogan@medicine.ucsf.edu

December 14, 2013

Comprehensive Cancer Center

Immunology 101 for the Practicing Oncologist

Hematopoiesis

Innate and Adaptive Immunity

Nature Reviews | Cancer

Innate and Adaptive Immunity

Innate Immunity

- First line of defense
- Immediate reactivity
- Not antigen-specific
- > No memory

Adaptive Immunity

- Antigen-specific
- First encounter may taken time to build up efficacy
- Life-long immunity possible
- Preemptive immunization (vaccination) possible

Innate and Adaptive Immunity

Effective Immunity Requires Balance

Innate Immunity

Antigen Presenting Cells

Major Histocompatibility Antigens (HLA)

Antigen Presentation

Figure 1-16 Immunobiology, 7ed. (© Garland Science 2008)

Adaptive Immunity is Epitope-Specific

With a genome possessing only ~20,000 genes, how can humans develop immunity to specific epitopes from thousands of pathogens?

Immunoglobulin Gene Rearrangement

Immunoglobulin Mechanisms of Action

B and T Cell Repertoire Diversity

Gene segment	IGH	IGK	IGL	TCRA	TCRB	TCRG	TCRD
<i>V segments</i> Functional (family) Rearrangeable (family)	44 (7) 66 (7) ^b	43 (7) 76 (7)	38 (10) 56 (11)	46 (32) 54 (32)	47 (23) 67 (30)	6 (4) 9 (4)	8 8
<i>D segments</i> Rearrangeable (family)	27 (7)	_	_	_	2	_	3
<i>J segments</i> Functional Rearrangeable	6° 6°	5 ^d 5 ^d	4 5 ^e	53 61	13 13	5 5	4

Van Dongen et al., Leukemia 2003, 17:2257-2317

T Cell Selection

Hogquist et al., Nat Rev Immunol 2005, 5:772-782

T Cell Costimulation

Innate and Adaptive Immunity Work Together

Characteristics of Adaptive Immune Response

Source: Wikipedia

Immune Organs

Copyright © 2005 Nature Publishing Group Nature Reviews | Immunology

Randolph et al, Nat Rev Immunol 2005, 5:617-628

Cytotoxic and Helper T Cells

Swain et al., Nat Rev Immunol 2012, 12:136-148

T Cell Responses are Directed by Dendritic Cells

Nature Reviews | Immunology

T cell subsets: Th1, Th2, Th17, Tfh, Treg

Anergy / Peripheral Tolerance

Nature Reviews | Immunology

Regulatory T (Treg) Cells

Nature Reviews | Immunology

Dario et al., Nat Rev Immunol 2008, 8:523-532

Immune Checkpoints in Tumor Immunology

Nature Reviews | Cancer

Pardoll, Nat Rev Cancer 2012, 12:252-264

Regulatory Cells in Tumor Immunology

Immunotherapy Mechanisms

Sadelain et al., Nat Rev Cancer 2003, 3:35-45

Immunotherapy Mechanisms

Goals of Tumor Immunotherapy

- 1. Tilt the balance break tolerance, antagonize negative regulators
- 2. Stimulate responses to tumor-specific or tumor-associated antigens
- 3. Induce lasting immunity
- 4. Induce a breadth of response capable of targeting multiple tumor subclones
- 5. Improve patient outcomes

advancing health worldwide™

- 1. The ability of the adaptive immune system to respond to an extremely diverse array of antigens requires:
 - a) Thousands of genes encoding receptors for specific pathogen epitopes
 - b) Modular rearrangement of DNA segments at immunoreceptor genes to create many gene products from single genes
 - c) Differential post-translational modification of antigen receptors
 - d) Differential use of multiple antigen receptors simultaneously
 - e) None of the above

- 2. The major histocompatibility complex (aka, human leukocyte antigen/HLA) proteins participate in adaptive immune reactions by which mechanism:
 - a) Signaling via the B cell receptor to stimulate antibody production
 - b) Causing down-regulation of checkpoint inhibitors
 - c) Secreted HLA proteins serve as chemo-attractants for T cells
 - d) Presentation of peptide fragments from proteins within the cell
 - e) None of the above

- 3. Autoimmune T cell responses are prevented by which mechanism(s):
 - a) Anergy induced by T cell receptor recognition of antigen-MHC complexes without co-stimulation
 - b) Central deletion in the spleen
 - c) Inhibition by NK cells
 - d) All of the above
 - e) None of the above

- 4. Helper T cells are involved in which aspect(s) of immunity:
 - a) Stimulation of macrophage activity
 - b) Stimulation of antibody production
 - c) Stimulation of cytotoxic T cell function
 - d) All of the above
 - e) None of the above

- 5. Individual T cells:
 - a) Are able to respond to multiple antigens via expression of multiple T cell receptors
 - b) May participate in immune reactions and then undergo programmed cell death
 - c) May spend part of their life functioning as cytotoxic T cells and part of their life functioning as helper T cells
 - d) All of the above
 - e) None of the above

Answers

- 1. b
- 2. d
- 3. a
- 4. d
- 5. b

advancing health worldwide™